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A B S T R A C T

Effective management of perishable inventory systems is often strewn with challenges, especially when a strong
trade-off relationship exists between shortage and wastage of perishables: A smaller inventory increases the
chance to lose sales (leading to higher expected shortage cost), while a larger inventory increases the chance to
waste perishables (leading to higher expected wastage cost). The root cause of this strong trade-off relationship
is high product demand variability. To mitigate the issue and reduce the cost of operating perishable inventory
systems, some grocery stores utilize an opaque selling scheme: selling an anonymous product whose brand or
exact specification is shielded from customers at the time of sale. The use of opaque products has now become
a popular means to reduce shortage/wastage at grocery stores. However, there has been little discussion of
the effectiveness of opaque schemes applied to perishable inventory systems.

In this paper, we propose an opaque scheme based on the balancing policy on demand, which tries to
average out orders for products. We confirm both analytically and numerically that this opaque scheme
effectively reduces product demand variability, thereby reducing both shortage and wastage for perishable
inventory systems under a base-stock policy. We also present an analytical formula that reveals insights into
the opaque scheme: The ratio between the opaque proportion and the coefficient of variation of product
demands plays a key role to determine the effectiveness of our opaque scheme. Furthermore, we provide a
rule of thumb to find the threshold opaque scheme parameters needed to achieve the maximum total cost
savings for perishable inventory systems. We hope that many retailers selling perishables (e.g., fresh produce
and baked goods) find the opaque scheme useful, implement it, and contribute to the reduction of the food
wastage.

1. Introduction

In 2011, about one-third of food produced for human consumption
was wasted globally [1]. In the United States in 2010, about 133 billion
pounds (31%) of the food supply was wasted, including 43 billion
pounds at retail level [2]. This large amount of food waste not only
imposes an economic loss for producers and sellers, but also exacerbates
food insecurity for low-income communities [3]. One of the contrib-
utors to food waste is poor management of perishable inventory: [2]
point out that food waste at retail level occurs from ‘‘overstocking or
overpreparing due to difficulty predicting number of customers’’. As is
commonly known, ‘‘businesses are frequently motivated to overproduce
or over-order because they are afraid of running out of food or failing to
meet client expectations’’ [4]. For retail store managers, overstocking
perishable products is necessary in anticipation of the possibility of lost
sales when product demand is highly variable. However, overstocking
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leads to higher expected wastage. The root cause of this trade-off rela-
tionship is high variability of product demand. If the product demand
was accurately predictable with no uncertainty, a seller would order
the exact amount necessary and yield no lost sales (i.e., shortage) or
wastage; however, an accurate prediction of product demand is not
always possible.

To cope with highly variable product demand in perishable inven-
tory systems, retail store owners often utilize an opaque selling scheme
(or simply, an opaque scheme). This scheme involves the sales of an
opaque product, wherein customers only know the types of products
they may possibly get, but do not know the exact product attributes
until they purchase or receive it. The simplest example would be the
following. Suppose a seller receives an order of 30 red apples, 50 yellow
apples, and 20 opaque apples; the seller allocates 20 opaque orders to

https://doi.org/10.1016/j.orp.2021.100220
Received 5 September 2021; Received in revised form 24 December 2021; Accepted 25 December 2021

http://www.elsevier.com/locate/orp
http://www.elsevier.com/locate/orp
mailto:katsunobu.sasanuma@stonybrook.edu
mailto:hibiki@tohoku.ac.jp
mailto:thomas.sexton@stonybrook.edu
https://doi.org/10.1016/j.orp.2021.100220
https://doi.org/10.1016/j.orp.2021.100220
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2021.100220&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Operations Research Perspectives 9 (2022) 100220

2

K. Sasanuma et al.

red apples, making demands of both red and yellow apples equal to 50,
so that the seller can average out red and yellow apples’ demands and
achieve less variability for both product demands. Many merchants and
producers implement a variety of opaque schemes successfully without
calling them opaque: for example, a package of assorted food items
(such as bagels and donuts), whose combination is not easily identified
in a brown bag, is often sold at a discount price at supermarkets;
Apple Japan sells Lucky Bags that contain various currently-sold mer-
chandises in sealed bags at a discount price; Priceline sells anonymous
hotels as ‘‘Express Deal’’ together with hotels that are fully specified.
Another example is the app, ‘‘Too Good To Go’’, which aims to reduce
food waste by selling unspecified food items (e.g., bakeries, delis, and
cakes). The number of mobile apps that implement various opaque
schemes has rapidly grown in recent years. In addition, the COVID-19
pandemic has driven customers to shift from physical to online stores
across many categories such as fresh produce and groceries, making the
implementation of an opaque scheme easier than before.

1.1. Contributions and outline

The benefit of opaque schemes for non-perishables (e.g., clothes)
has been observed in practice and discussed in the literature. How-
ever, even though we observe opaque schemes being utilized at many
grocery stores and bakeries selling fresh foods through mobile apps,
a quantitative analysis of opaque schemes for perishables has not
been published. Thus, the research questions we address in this paper
are: (i) how we can evaluate the effectiveness of an opaque selling
scheme in a simple mathematical form; (ii) under what conditions does
our opaque scheme provide benefits in perishable inventory systems;
and (iii) what recommendations our study can provide to retail store
owners managing to reduce wastage. This paper helps practitioners in
addressing these questions by introducing an opaque scheme suitable
for perishables, evaluating its effectiveness for perishable inventory
systems, and providing simple rules of thumb for practitioners when
implementing our opaque scheme.

The remainder of this paper is structured as follows. We review
the previous literature and explain the research gap in Section 2. We
provide exact/approximate formulas to obtain the variability (Propo-
sition 1, Corollary 2) and correlation (Lemma 2) of product demands
under our opaque scheme in Section 3; we provide an approximate
formula to obtain the threshold variability to make the expected short-
age and wastage close to zero (Proposition 2) in Section 4; we confirm
the accuracy of the analytical formulas using numerical experiments
in Section 5; and we discuss the managerial insights into the opaque
scheme in Section 6. Finally, Section 7 summarizes our study. The list
of notations used in this paper and all proofs are in the Appendix.

2. Related literature

To reduce the amount of wastage, many retail store owners often
sell their about-to-expire products at significantly discounted prices.
This practice may not be desirable; knowledge that there may be a
last-minute discount could dissuade buyers from purchasing items at
regular (higher) prices. Reinforcing such a buyer habit may decrease
the average selling price and seriously damage the market [5]. An-
other common practice is to donate older products to food banks,
which certainly contributes to the reduction of wastage; however, retail
stores still pay for wastage. The root cause, high variability of product
demand, still remains.

2.1. Key idea: risk pooling

To cope with risk (volatile and unpredictable customer demand),
operations managers frequently use a scheme called risk pooling—a
strategy to suppress the variability using pooled demand (combined
demand). Risk pooling has been proven effective in the context of

supply chain management (see, e.g., [6–8]). An opaque scheme is
one such example: It utilizes pooled demand as the means to control
highly variable and unpredictable demands of products. This scheme
has attracted much attention especially in revenue management [9–14].
For example, Priceline has reduced shortage (lost sales) and wastage
of hotel rooms by offering opaque hotel rooms to their customers.
Under Priceline’s opaque scheme, room buyers do not know the brand
of the hotel prior to purchase; however, they may reserve an opaque
hotel room (at a discount room rate) that would stay unoccupied and
be wasted if Priceline did not offer opaque hotel rooms. [13] reveals
the relationship between opaque hotel room pricing and hotel room
inventory, thereby confirming the effectiveness of Priceline’s opaque
scheme.

2.2. Research gap

Although an increasing attention is paid to opaque schemes in
revenue management, the literature on opaque schemes in inventory
systems is still very small. Table 1 lists papers that discuss opaque
selling schemes in revenue management and in inventory manage-
ment. [15–17] study an effectiveness of opaque schemes when selling
non-perishable products. [15] focus on the pricing schemes of opaque
products when pessimistic and risk-neutral customers exist. [16,17] dis-
cuss the opaque scheme for non-perishable inventory systems following
a continuous-review (0, 𝑆) policy, where an order is placed to make the
inventory level back to the order-up-to level 𝑆 when the inventory is
depleted. An opaque scheme is applied to the system with two non-
opaque products [16] or more [17]; their theoretical analysis is limited
to the no lead time, backlogging, or lost sales case.

These existing studies focus on non-perishable products (e.g.,
clothes), not on perishable products (e.g., fresh produce, baked goods).
As far as authors know, theoretical analysis of opaque schemes has
not been made for perishable inventory systems, despite the fact that
many retail stores already implement such schemes. Our study fills the
research gap by looking into the effectiveness of opaque schemes in
perishable inventory systems. We apply the no lead time assumption
for our study in accord with previous opaque scheme studies. Our
paper has two major differences from existing studies on non-perishable
inventory systems: (1) we consider a periodic base-stock policy, which
is more suitable for perishable products; and (2) our opaque order
fulfillment procedure is based on the number of orders received in each
period (BPD) and not based on the on-hand inventory (BPI).

2.3. BPI (balancing policy on inventory)

To carry out the risk pooling principle in a perishable inventory
system, we can consider balancing policy on inventory (BPI): Using
pooled demand (opaque product demand), BPI attempts to average out
the inventory level among products. The actual procedure to implement
BPI would be to ‘‘fulfill demand for opaque products by using the
product with the highest on-hand inventory level’’ [17]. For non-
perishable inventory systems, BPI is often considered as an optimal
policy [18]; furthermore, even a small proportion of opaque product
demand can effectively improve the operation [17]. However, sellers
may face challenges when implementing BPI in perishable inventory
systems: First, larger on-hand inventory often implies larger amount
of aged (about-to-perish) inventory. Thus, BPI may implicitly prioritize
the use of older units to fulfill opaque demand whenever possible.
When sellers implement BPI, customers might regard opaque products
as not only opaque, but also aged. (For example, Lucky Bags sold
at Apple Japan, a popular opaque selling scheme, seldom contain
recently-released products. Instead, we often observe a bag full of ob-
solete products since sellers implement BPI.) Such a perception harms
the reputation of stores and provides a disincentive for customers to
purchase opaque products unless they are sold at hugely discounted
prices. Second, the proper execution of BPI for perishable inventory
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Table 1
Studies discussing opaque selling schemes.
Paper Management area (focus) Scope

Fay [9] Revenue (travel industry) Opaque goods sold through intermediaries
Jiang [10] Revenue (travel industry) Price discrimination and market segmentation
Fay and Xie [11] Revenue (travel industry) Probabilistic selling
Jerath et al. [12] Revenue (travel industry) Last-minute selling vs. opaque selling
Anderson [13] Revenue (travel industry) Priceline’s opaque selling scheme
Anderson and Xie [14] Revenue (travel industry) Optimal opaque pricing policy
Elmachtoub and Hamilton [15] Revenue (non-perishables) Pessimistic vs. risk-neutral customers
Elmachtoub et al. [16] Inventory (non-perishables) Two products, opaque selling vs. dynamic pricing
Elmachtoub et al. [17] Inventory (non-perishables) Two or more products, balancing policy on inventory
Present study Inventory (perishables) Balancing policy on demand, perishable inventory system

is extremely complicated; for example, it is hard to determine which
inventory to use first for fulfilling demand for opaque products, smaller
inventory of older products vs. larger inventory of newer products.
These challenges do not exist for non-perishables; however, they may
become a major obstacle when implementing BPI for perishables.

2.4. BPD (balancing policy on demand)

We propose a simpler alternative, balancing policy on demand (BPD),
which attempts to average out product demand. BPD fulfills demand
for opaque products by using the product with the least demand. BPD
does not utilize on-hand inventory information, and thus may have
inferior performance compared to BPI; however, we show that BPD
only requires a small amount of opaque product demand to average
out demands among products, thereby achieving a balanced inventory
level that BPI also achieves. Furthermore, BPD does not suffer from
two challenges that BPI faces: First, BPD is simpler to implement in
practice than BPI; moreover, under BPD, a seller does not necessarily
allocate an older inventory to fulfill the demand of opaque products.
BPD requires a purchaser of opaque products to give up only the
specificity of products (in exchange for some monetary or nonmonetary
benefits for customers), not the quality (i.e., freshness, age) of products.
We show in this paper that our opaque scheme using BPD effectively
reduces the variability of demands and achieves high cost savings for
perishable inventory systems.

2.5. Scaled Poisson demand for non-opaque products

BPD opaque schemes (as well as BPI) can be applicable to any prod-
uct demand distributions (regardless of perishables or non-perishables).
For the sake of analytical studies, we assume that a periodic demand
of each product follows a scaled Poisson distribution. An alternative,
more commonly used demand distribution in inventory models would
be a compound Poisson distribution1 (see, e.g., [19,20] and references
therein); however, we utilize a scaled Poisson distribution since it can
accurately approximate various compound Poisson distributions [21]
and yet, is simpler to implement than a compound Poisson distribution.
Throughout this study, we allow demands and orders for inventory
replenishment to be non-integers (note: examples of non-integer per-
ishables are cut vegetables/fruits, which are gaining in popularity
recently).

2.6. Base-stock model for perishable inventory systems

The optimal inventory policy for a perishable inventory system is
hard to find due to curse of dimensionality—the intractability of all
possible change of inventory items with different ages over infinite
period. Thus, various heuristic methods have been proposed (for a

1 A compound Poisson distribution is versatile and can replicate various
consumer purchasing behaviors: Each customer arrives following a Poisson
process, whose purchases follow an arbitrary distribution.

review, please see [22,23]; one of the examples is [24]). Among many
heuristic policies that are available today, a simple base-stock policy is
still considered as an effective scheme [25–27]. In this study, we use
this simple base-stock policy. We further impose simplifying assump-
tions used in [28]: fixed shelf life, i.i.d. (independent and identically
distributed) demand, periodic review, FIFO (first-in first-out) issuance
policy, and the total cost that involves shortage and wastage costs. The
analysis of the models with more relaxed assumptions would be the
next step after this study.

3. Opaque selling scheme

This section introduces our (𝑛, 𝑝) opaque scheme based on BPD
policy. The result we obtain in this section applies to both perishable
and non-perishable products. The goal of the (𝑛, 𝑝) opaque scheme is
to reduce the variability of non-opaque product demands by allocating
opaque product demand to non-opaque product demands (i.e., fulfilling
opaque product orders using non-opaque products.) Notations used in
this study are summarized in Appendix A

3.1. Model

The (𝑛, 𝑝) opaque scheme is characterized by 𝑛 (≥2) non-opaque
products and probability vector 𝒑 ∶= (𝑝1, 𝑝2,… , 𝑝𝑛), where each
𝑝𝑖 ∈ [0, 1] represents the probability that a customer for non-opaque
product 𝑖 ∈ {1,… , 𝑛} switches to purchase an opaque product if both
opaque and non-opaque products are offered to customers. We intro-
duce three random variables to describe the demands at various stages:
original demands (𝐷𝑖

0 for non-opaque product 𝑖), intermediate demands
(𝑋𝑖

𝒑 for non-opaque product 𝑖 and 𝑋0
𝒑 for an opaque product), and

adjusted demands (𝐷𝑖
𝒑 for non-opaque product 𝑖). Original demands

are the number of orders placed for non-opaque products when no
opaque product is offered to customers. We represent original demands
by independent (but not necessarily identical) random variable 𝐷𝑖

0 for
product 𝑖, whose mean is 𝜇𝑖 = E[𝐷𝑖

0] and variance is 𝜎2𝑖 = E[(𝐷𝑖
0 − 𝜇𝑖)2].

Intermediate demands are the number of orders placed for non-opaque
and opaque products when both non-opaque/opaque products are
offered to customers. We represent intermediate demands by 𝑋𝑖

𝒑 for
non-opaque product 𝑖 and 𝑋0

𝒑 for an opaque product. Finally, adjusted
demands are the number of orders for non-opaque products including
some of the orders originally placed for an opaque product. (This
adjustment is essentially the procedure to distribute opaque demand 𝑋0

𝒑
to 𝑛 non-opaque demands 𝑋𝑖

𝒑,∀𝑖.)
Using these variables, we can describe the procedure to implement

our opaque scheme under BPD:
Step 1: (status quo) All products sold are non-opaque, and their de-
mands are 𝐷𝑖

0 (original demand).
Step 2: (implementation) An opaque product is now sold. All non-
opaque product demands change from 𝐷𝑖

0 to 𝑋𝑖
𝒑 (intermediate de-

mand). In addition, an opaque product shows its demand 𝑋0
𝒑.

Step 3: (adjustment) The entire opaque demand 𝑋0
𝒑 is distributed and

added to 𝑋𝑖
𝒑,∀𝑖. Through this adjustment, we obtain 𝐷𝑖

𝒑 (adjusted
demand).
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3.2. Assumptions

In order to facilitate the analysis, we make a few simplifying as-
sumptions for the model. First, we require the average of adjusted
demand (orders) remain unchanged: E[𝐷𝑖

0] = E[𝐷𝑖
𝒑] (= 𝜇𝑖),∀𝒑,∀𝑖.

Second, we assume that the total demand (total number of orders)
remains unchanged after an opaque product is offered to customers:
∑

𝑖 𝐷
𝑖
0 =

∑

𝑖 𝑋
𝑖
𝒑 + 𝑋0

𝒑 =
∑

𝑖 𝐷
𝑖
𝒑,∀𝒑. Lastly, we assume that the cus-

tomers’ decisions are independent from each other: E[𝑋𝑖
𝒑] = (1 − 𝑝𝑖)𝜇𝑖

and E[𝑋0
𝒑] =

∑

𝑖 𝑝
𝑖𝜇𝑖. Thus, we can interpret 𝑝𝑖 as a proportion of orders

shifted from non-opaque product 𝑖 to an opaque product under the
opaque scheme: 𝑝𝑖 = 1 − E[𝑋𝑖

𝒑]∕𝜇
𝑖. A seller can control the proportion 𝒑

by providing customers incentives to purchase an opaque product.
Examples of such incentives include discounts, reduced/free shipping
fees, and labeling an opaque product as an eco-friendly choice that
helps reduce food waste. If no customers are inclined to purchase an
opaque product, then 𝒑 = 𝟎 = (0, 0,… , 0) (no opaque case), and thus
𝑋0

𝟎 = 0 and 𝐷𝑖
0 = 𝑋𝑖

𝟎 = 𝐷𝑖
𝟎,∀𝑖. In contrast, if all customers always

purchase an opaque product, then 𝒑 = 𝟏 = (1, 1,… , 1) (full opaque
case), and thus, 𝑋𝑖

𝟏 = 0,∀𝑖 and ∑

𝑖 𝐷
𝑖
0 = 𝑋0

𝟏 =
∑

𝑖 𝐷
𝑖
𝟏. For simplicity

of notation, if all elements of vector 𝒑 are equivalent, we denote a
subscript as scalar 𝑝 unless it creates a confusion (e.g., we denote 𝐷𝑖

0
instead of 𝐷𝑖

𝟎).

3.3. Variance 𝜎2𝑛,𝒑

Let the average variance of original demands be 𝜎2 ∶= 1
𝑛
∑

𝑖 𝑣𝑎𝑟(𝐷
𝑖
0)

and the average variance of adjusted demands under the (𝑛, 𝑝) opaque
scheme be 𝜎2𝑛,𝒑 ∶= 1

𝑛
∑

𝑖 𝑣𝑎𝑟(𝐷𝑖
𝒑). The following lemma shows the bound

of 𝜎2𝑛,𝒑.

Lemma 1. The average variance 𝜎2𝑛,𝒑 is bounded as follows. 𝜎2𝑛,𝒑 takes an
upper bound 𝜎2𝑛,𝟎 = 𝜎2 when 𝒑 = 𝟎 and takes a lower bound 𝜎2𝑛,𝟏 =

𝜎2

𝑛 when
𝒑 = 𝟏.

𝜎2 ≥ 𝜎2𝑛,𝒑 ≥ 𝜎2

𝑛
. (1)

Lemma 1 implies that 𝜎2𝑛,𝒑 is minimized at 𝑝 = 1 when the deviation
of each product demand from its mean is averaged out among all prod-
ucts: 𝐷𝑖

1 = 𝜇𝑖 + 1
𝑛
∑

𝑗 (𝐷
𝑗
0 − 𝜇𝑗 ). We can establish the opaque product

demand allocation policy (BPD) as Corollary 1. We omit the proof,
which follows straightforwardly from the fact that 𝜎2𝑛,𝒑 is minimized

when we minimize the term ∑∑

𝑖<𝑗

(

(𝐷𝑖
𝑝 − 𝜇𝑖) − (𝐷𝑗

𝑝 − 𝜇𝑗 )
)2

(see the
proof of Lemma 1).

Corollary 1. Balancing policy on demand (BPD): To minimize the average
variance 𝜎2𝑛,𝒑 under the (𝑛, 𝑝) opaque scheme, we distribute opaque product
demand (𝑋0

𝒑) to non-opaque product demands (𝑋𝑖
𝒑,∀𝑖 ∈ {1,… , 𝑛}) with

smallest 𝑋𝑖
𝒑 − 𝜇𝑖 or distribute equally if there is a tie.

For the rest of this paper, we impose additional conditions to obtain
analytical expressions for some performance indices. Specifically, we
assume constant 𝑝 for all products and an i.i.d. scaled Poisson random
variable 𝐷0 to represent original non-opaque product demands. To
obtain the distribution of 𝐷0, we first start from a Poisson random
variable with parameter 𝜆 (which we call base Poisson parameter of a
scaled Poisson random variable) and scale its distribution to make its
mean equal to 𝜇. Specifically, denoting 𝑌𝛾 ∼ 𝑃𝑜𝑖𝑠(𝛾), we can represent
𝐷0 as 𝐷0 = 𝜇

𝜆 𝑌𝜆. It follows that the fully adjusted demand 𝐷1 under
the (𝑛, 1) opaque scheme (i.e., 𝐷𝑝 with 𝑝 = 1; a sample mean of 𝑛
i.i.d. 𝐷0) also follows a scaled Poisson distribution: 𝐷1 = 𝜇

𝑛𝜆𝑌𝑛𝜆.2 For

2 Note that 𝐷𝑝 with 𝑝 ∈ (0, 1) and 𝑛 ≠ 1 is not scaled Poisson; it is a complex
mixture of two scaled Poisson distributions.

Table 2
Properties of scaled Poisson demands 𝐷0, 𝐷1, and 𝐷1.

Demand Base Poisson parameter Mean Variance 𝑐𝑣

𝐷0 𝜆 𝜇 𝜎2
𝑛,0 =

𝜇2

𝜆
(

=∶ 𝜎2) 1
√

𝜆

𝐷1 𝑛𝜆 𝜇 𝜎2
𝑛,1 =

𝜇2

𝑛𝜆

(

= 𝜎2

𝑛

)

1
√

𝑛𝜆

𝐷1 𝑛𝑚𝜆 𝜇
𝜇2

𝑛𝑚𝜆

(

= 𝜎2

𝑛𝑚

)

1
√

𝑛𝑚𝜆

use in Proposition 2, we also introduce a sample mean of i.i.d. 𝐷1 over
𝑚 shelf life periods: 𝐷1 =

𝜇
𝑛𝑚𝜆𝑌𝑛𝑚𝜆. For ease of reference, we summarize

the properties of these scaled Poisson demands in Table 2.

3.4. Relative variance 𝜎2𝑟𝑒𝑙(𝑝)

To find 𝜎2𝑛,𝑝, it is convenient to use a new indicator, relative variance
𝜎2𝑟𝑒𝑙(𝑝). It represents the proximity of 𝜎2𝑛,𝑝 to the sample mean variance;
see Definition 1. Notice that the minimization of 𝜎2𝑟𝑒𝑙(𝑝) is essentially
equivalent to minimizing 𝜎2𝑛,𝑝(𝑝). From now on, we will consider 𝜎2𝑟𝑒𝑙(𝑝).

Definition 1. For all 𝑛 ≥ 2 and 𝑝 ∈ [0, 1], relative variance under the
(𝑛, 𝑝) opaque scheme is defined as

𝜎2𝑟𝑒𝑙(𝑝) ∶=
𝜎2𝑛,𝑝 − 𝜎2𝑛,1
𝜎2𝑛,0 − 𝜎2𝑛,1

=
𝜎2𝑛,𝑝 −

𝜎2

𝑛

𝜎2 − 𝜎2
𝑛

. (2)

Note that 𝜎2𝑛,𝑝 takes 𝜎2𝑛,0 = 𝜎2 when 𝑝 = 0 and takes 𝜎2𝑛,1 = 𝜎2∕𝑛
when 𝑝 = 1 (see Lemma 1). By definition, we observe 𝜎2𝑟𝑒𝑙(𝑝) ∈ [0, 1],
𝜎2𝑟𝑒𝑙(0) = 1, and 𝜎2𝑟𝑒𝑙(1) = 0. If we know 𝜎2𝑟𝑒𝑙(𝑝) (which we simply denote
as 𝜎2𝑟𝑒𝑙 unless there is confusion), we can derive 𝜎2𝑛,𝑝 as

𝜎2𝑛,𝑝 =
1 + (𝑛 − 1)𝜎2𝑟𝑒𝑙

𝑛
𝜎2 = 𝜎2𝑛,1 + (𝑛 − 1)𝜎2𝑟𝑒𝑙𝜎

2
𝑛,1. (3)

The new indicator 𝜎2𝑟𝑒𝑙 is introduced primarily for mathematical
convenience; however, 𝜎2𝑟𝑒𝑙 has a relationship with a popular indicator,
an average correlation coefficient 𝜌𝑝 of adjusted demands. We observe
that a reduction of 𝜎2𝑟𝑒𝑙 (= 𝜎2𝑟𝑒𝑙(𝑝)) makes all adjusted demands closer
to their sample mean, and therefore, increases an average correlation
coefficient 𝜌𝑝 of adjusted demands. For example, it is expected that
𝜎2𝑟𝑒𝑙(𝑝) = 1 and 𝜌𝑝 = 0 at 𝑝 = 0, and 𝜎2𝑟𝑒𝑙(𝑝) = 0 and 𝜌𝑝 = 1 at 𝑝 = 1.
The following lemma tells us the relationship between 𝜎2𝑟𝑒𝑙(𝑝) and 𝜌𝑝
for any 𝑝 ∈ [0, 1].

Lemma 2. Consider the (𝑛, 𝑝) opaque scheme, where 𝑛 ≥ 2. Relative
variance and correlation coefficient satisfy the following relationships.

𝜎2𝑟𝑒𝑙(𝑝) =
1 − 𝜌𝑝

1 + (𝑛 − 1)𝜌𝑝
,

or equivalently,

𝜌𝑝 =
1 − 𝜎2𝑟𝑒𝑙(𝑝)

1 + (𝑛 − 1)𝜎2𝑟𝑒𝑙(𝑝)
. (4)

Remark 1. Lemma 2 indicates that 𝜎2𝑟𝑒𝑙(𝑝) and 𝜌𝑝 satisfy the involution
property: The inverse operation and the forward operation are the
same.

3.5. Exact and approximate representations of 𝜎2𝑟𝑒𝑙(𝑝): 𝑛 = 2 case

We now consider the 𝑛 = 2 case and find the exact analytical
expression for 𝜎2𝑟𝑒𝑙. First, we note the following proposition.
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Proposition 1. Consider the (𝑛, 𝑝) opaque scheme with 𝑛 = 2. Define a
random variable 𝑇 = 𝑋1

𝑝 −𝑋2
𝑝 −𝑋0

𝑝 and its variance 𝜎𝑇 = 𝑣𝑎𝑟(𝑇 ). Relative
variance of adjusted demand is exactly represented as a function of 𝑇 :

𝜎2𝑟𝑒𝑙 =
2E[𝑇 2

|𝑇 > 0]𝑃𝑟(𝑇 > 0)
𝜎2𝑇

. (5)

Eq. (5) in Proposition 1 is exact, but is not convenient when we
evaluate 𝜎2𝑟𝑒𝑙. We show an approximation in Corollary 2.

Corollary 2. Let 𝐷0 follow a scaled Poisson distribution with 𝑐𝑣 = 1∕
√

𝜆.
Denote 𝛼 = 𝑝

√

2𝜆 = 𝑝
𝑐𝑣

√

2. Using the standard normal CDF 𝛷(⋅) and PDF

𝜙(⋅), we obtain the following approximation.

𝜎2𝑟𝑒𝑙 ≈ 2(1 + 𝛼2)𝛷(−𝛼) − 2𝛼𝜙(𝛼). (6)

Eq. (6) shows that relative variance 𝜎2𝑟𝑒𝑙 is a function of 𝛼 (∝ 𝑝∕𝑐𝑣);
thus, we know that adjusted variance 𝜎2𝑛,𝑝 does not change if both 𝑝
and 𝑐𝑣 proportionally change. This property provides a useful tip for
practitioners when implementing our opaque scheme. Specifically, if
we observe a change of 𝑐𝑣 in product demands, we should change 𝑝
proportionally in order to maintain the same level of 𝜎2𝑛,𝑝 (see Fig. 1c
and the discussion therein). Note that Eq. (6) is obtained for 𝑛 = 2;
however, it can be used to obtain an approximate value of 𝜎2𝑟𝑒𝑙 for any 𝑛
since 𝜎2𝑟𝑒𝑙 is not sensitive to 𝑛 according to our numerical experiment
(see Fig. 2b and the discussion therein).

4. Perishable inventory system

In this section, we analyze the effect of our opaque scheme on the to-
tal cost of a single product lost-sales perishable inventory system [28].
As in the previous sections, original demands of all non-opaque prod-
ucts are represented by an i.i.d. scaled Poisson random variable 𝐷0 with
mean 𝜇 (= E[𝐷]) and variance 𝜎2 (= 𝜇2∕𝜆). We assume all orders are
placed at the start of each period to make the inventory level equal
to the base-stock level 𝑞 units; all ordered items arrive instantaneously
and are new; and inventory is depleted following a FIFO issuance rule.
If any orders are not fulfilled due to a lack of inventory, they are lost
and incur a per-unit shortage cost 𝑟 (sales price minus purchase cost).
If any products in inventory are not sold within 𝑚 shelf life periods,
they are discarded and incur a per-unit wastage cost 𝜃 (purchase
cost plus recycling/landfill/compost cost minus salvage value of an
outdated product). At the end of business hours, a seller implements
an (𝑛, 𝑝) opaque scheme with BPD (i.e., fulfilling opaque orders using
non-opaque products with least orders).

Let 𝑆 and 𝑊 be the number of shortages (lost sales) and wastages
per period per product, respectively. We define the total cost as 𝐶 =
𝑟𝑆+𝜃𝑊 . We consider that the total holding cost is fixed with negligible
per-product holding cost, and omit it from the total cost. Our goal is to
minimize the expected total cost E[𝐶] utilizing the (𝑛, 𝑝) opaque scheme
with BPD.

Denote CDF and PMF of a discrete random variable 𝑌 as 𝐹𝑌 (⋅) and
𝑃𝑌 (⋅), respectively. Table 2 summarizes the definitions of three scaled
Poisson random demands we use: 𝐷0, 𝐷1, and 𝐷1. Let 𝑠 =

⌊

𝑛𝜆𝑞
𝜇

⌋

and
𝑌𝛾 ∼ 𝑃𝑜𝑖𝑠(𝛾). We obtain the following proposition.

Proposition 2. Consider implementing the (𝑛, 1) opaque scheme for
perishable products with 𝑚-period shelf life. The expected per-period per-
product shortages, wastages, and total cost satisfy that, for any base-stock
level 𝑞 ≥ 0,

E[𝑆] = E
[

𝐷1 − 𝑞
]+ = (𝜇 − 𝑞) (1 − 𝐹𝑌𝑛𝜆 (𝑠)) + 𝜇𝑃𝑌𝑛𝜆 (𝑠), (7)

𝑚E
[ 𝑞
𝑚

−𝐷1

]+
≥ E[𝑊 ] ≥ E

[ 𝑞
𝑚

−𝐷1

]+
=
( 𝑞
𝑚

− 𝜇
)

𝐹𝑌𝑛𝑚𝜆 (𝑠) + 𝜇𝑃𝑌𝑛𝑚𝜆 (𝑠).

(8)

Thus, denoting 𝐶𝐿𝐵 = 𝑟E
[

𝐷1 − 𝑞
]+ + 𝜃E

[

𝑞
𝑚 −𝐷1

]+
, 𝐶𝐿𝐵 ≤ E[𝐶] ≤

𝑚𝐶𝐿𝐵 holds.

According to Proposition 2, E[𝐶] ≈ 0 holds at a wider range of 𝑞
as 𝑛𝜆 increases since 𝐹𝑌𝑛𝜆 (𝑠) and 𝐹𝑌𝑛𝑚𝜆 (𝑠) approach a step function of 𝑞
at 𝑞 = 𝜇 and 𝑞 = 𝑚𝜇, respectively, and both 𝑃𝑌𝑛𝜆 (𝑠) and 𝑃𝑌𝑛𝑚𝜆 (𝑠) shrink
(note: we observe this property experimentally in Figs. 5 and 6). At
the limit of 𝑛𝜆 → ∞, we observe 𝐷1, 𝐷1 → 𝜇 and 𝐸[𝐶] → 0 for any
𝑞 ∈ [𝜇,𝑚𝜇]. This insensitivity property was first pointed out by [29];
the property is important for practitioners who prefer their inventory
systems to be robust.

Proposition 2 can be used to find the condition to achieve E[𝐶] ≈ 0.
For this purpose, we introduce threshold parameters 𝑛th and 𝜎2th as Def-
inition 2. These parameters provide useful information for practitioners
trying to achieve E[𝐶] ≤ 𝑚𝛿 (where 𝛿 is sufficiently small; see Table 3
and the discussion therein).

Definition 2. For sufficiently small 𝛿, the threshold variance 𝜎2th is
defined as

𝜎2th = max
𝑛≥2

{𝜎2𝑛,1 | 𝐶LB ≤ 𝛿}. (9)

Also define the threshold number of non-opaque products as 𝑛th = 𝑛
s.t. 𝜎2𝑛,1 = 𝜎2th.

5. Numerical experiments

5.1. Simulation settings

In this section, we numerically examine the effectiveness of our (𝑛, 𝑝)
opaque scheme. We split the experiments into two parts. In the first
part (Sections 5.2 and 5.3), we obtain a series of simulated adjusted
demands 𝐷𝑝 under the opaque scheme, examine them, and evaluate the
impact of the opaque scheme on the variance of adjusted demands 𝜎2𝑛,𝑝
(or 𝜎2𝑟𝑒𝑙); in the second part (Sections 5.4 to 5.6), we use the simulated
𝐷𝑝 to run a Monte Carlo simulation and evaluate the impact of the
opaque scheme on the expected per-period total cost E[𝐶].

We control variables as follows: the number of non-opaque prod-
ucts 𝑛 ∈ [1, 12], proportion 𝑝 ∈ [0, 1], base Poisson parameter 𝜆 ∈
{4, 6, 8, 10, 12, 14} which correspond to coefficient of variation 𝑐𝑣 ∈
{0.50, 0.41, 0.35, 0.32, 0.29, 0.27}, and average demand 𝜇 = 10. We first
generate 10,000 (sample values of) original demand 𝐷0 for each one of
the 𝑛 products. We then generate 10,000 sets of intermediate demands
𝑋0

𝑝 and 𝑋𝑖
𝑝, 𝑖 ∈ {1,… , 𝑛}, from which we obtain 10,000 adjusted

demand 𝐷𝑝 following BPD. These numerically-obtained 𝐷𝑝 are used
for a 10,000-period Monte Carlo simulation for a perishable inventory
model under a base-stock policy with a base-stock level 𝑞 ∈ [0, 50]. We
allow demands and orders for inventory replenishment to take non-
integer values in our experiments. In this numerical study, we only
consider shortage and wastage costs when evaluating the expected
total cost E[𝐶], omitting a holding cost from consideration (see the
discussion in Section 6.6.)

5.2. Impact of 𝑐𝑣 of non-opaque products on variance 𝜎2𝑛,𝑝

Fig. 1 examines the impact of 𝑐𝑣 of the original demand 𝐷0 on 𝜎2𝑛,𝑝
when there are 2 non-opaque products (𝑛 = 2). We observe in Fig. 1a the
convergence of adjusted demand variance to the sample mean variance
for various 𝑐𝑣 values; however, the comparison is not easy due to
different variance of original demands with various 𝑐𝑣 values. Thus we
plot relative variance 𝜎2𝑟𝑒𝑙 in Fig. 1b. Our simulation result indicates that
the speed of convergence is strongly affected by 𝑐𝑣 of 𝐷0; specifically, as
𝑐𝑣 gets larger, 𝜎2𝑟𝑒𝑙 converges to 0 more slowly. This property is expected
since we need a higher opaque proportion 𝑝 to suppress the demand
variability of 𝐷0 when 𝐷0 is highly variable.

We further investigate this property in Fig. 1c. Here we plot 𝜎2𝑟𝑒𝑙
as a function of 𝑝∕𝑐𝑣; the simulation results for various different pa-
rameters all align to the same curve: Eq. (6). This property is useful
since Eq. (6) (or Fig. 1c) determines 𝜎2𝑟𝑒𝑙 for any 𝑐𝑣. For example, Fig. 1c
indicates 𝜎2𝑟𝑒𝑙 = 0.2 for 𝑝∕𝑐𝑣 = 0.6. Thus, if 𝑐𝑣 = 0.5 (𝜆 = 4), then
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Fig. 1. The effect of 𝑐𝑣 (or 𝜆) on 𝜎2
𝑛,𝑝 and 𝜎2

𝑟𝑒𝑙 for 𝑛 = 2.

Fig. 2. The effect of 𝑛 on 𝜎2
𝑛,𝑝 and 𝜎2

𝑟𝑒𝑙 for 𝑐𝑣 = 0.32 (𝜆 = 10).

𝑝 = 0.6 ⋅ 0.5 = 0.3 is required to achieve 𝜎2𝑟𝑒𝑙 = 0.2 (or equivalently,
𝜎2𝑛,𝑝 = 12.5 + 0.2 ⋅ 12.5 = 15 following Eq. (3) and 𝜎2𝑛,1 = 𝜎2∕𝑛 = 12.5),
which is consistent with the result in Fig. 1b. We discuss 𝜎2𝑟𝑒𝑙 only for
the 𝑛 = 2 case, but the following result implies that 𝜎2𝑟𝑒𝑙 is insensitive
to 𝑛.

5.3. Impact of the number of non-opaque products 𝑛 on variance 𝜎2𝑛,𝑝

Fig. 2a examines the impact of the number of non-opaque products
𝑛 (≥2) on 𝜎2𝑛,𝑝. To examine the speed of convergence (𝜎2𝑛,𝑝 → 𝜎2𝑛,1 = 𝜎2∕𝑛
as 𝑝 → 1), we fix 𝑐𝑣 = 0.32 (𝜆 = 10) and plot 𝜎2𝑟𝑒𝑙 for each 𝑛 in Fig. 2b.
Fig. 2b shows an approximate insensitivity property: 𝜎2𝑟𝑒𝑙 is almost
independent from 𝑛. Thus, for any 𝑛 or 𝑐𝑣, we can derive an approximate
value of 𝜎2𝑛,𝑝 using Eqs. (3) and (6). For example, Fig. 1c indicates that
𝜎2𝑟𝑒𝑙 = 0.2 at 𝑝∕𝑐𝑣 = 0.6, thus, for 𝑛 = 4 and 𝑐𝑣 = 0.32 (𝜆 = 10), we obtain
𝜎2𝑛,𝑝 = 2.5 + 0.2 ⋅ 7.5 = 4 at 𝑝 = 0.6 ⋅ 0.32 = 0.2; this result is consistent
with Fig. 2a.

5.4. Impact of the (𝑛, 𝑝) opaque scheme on the expected total cost E[𝐶]

In the previous section, we observed that 𝜎2𝑛,𝑝 of adjusted demand
𝐷𝑝 can be arbitrarily reduced by controlling (𝑛, 𝑝) under the opaque
scheme. We now examine how 𝐷𝑝 and its variance 𝜎2𝑛,𝑝 under the
(𝑛, 𝑝) opaque scheme affect the expected per-period total cost E[𝐶] =
𝑟E[𝑆] + 𝜃E[𝑊 ]. We also evaluate the condition to make E[𝐶] ≈ 0.

Fig. 3 shows the impact of 𝑝 on E[𝑆] and E[𝑊 ] while fixing 𝑐𝑣 = 0.32
(𝜆 = 10) and 𝑛 = 12; E[𝑆] and E[𝑊 ] are then combined to obtain E[𝐶]
for 𝑚 = 2 in Fig. 3e and for 𝑚 = 3 in Fig. 3f. We set 𝑟 = 𝜃 = 1 to
draw Figs. 3e and 3f. (Note: only the ratio 𝑟∕𝜃 is important since E[𝐶]
has an arbitrary unit in our plots.) We observe that E[𝐶] ≈ 0 for a
wider range of 𝑞 when the proportion 𝑝 is higher. Note that E[𝑆] for
𝑚 = 2 and 𝑚 = 3 (Figs. 3a and 3b, respectively) are identical since
shortages do not depend on shelf life 𝑚, while E[𝑊 ] (Figs. 3c and 3d)
show strong dependency on 𝑚; larger 𝑚 reduces E[𝑊 ] given 𝑞. The
optimal base-stock level, which is determined by the trade-off between
shortage and wastage, thus depends on 𝑚 (as well as cost parameters,
which we assume 𝑟 = 𝜃 = 1); in this experiment we observe 𝑞 = 15 for
𝑚 = 2 (Fig. 3e) and 𝑞 = 18 for 𝑚 = 3 (Fig. 3f). Since E[𝑊 ] is smaller for
larger 𝑚, the optimal E[𝐶] is smaller and the optimal base-stock level
that minimizes E[𝐶] is larger for larger 𝑚.

Next, we consider some cases with 𝑟 ≠ 𝜃. We set the ratio between
shortage and wastage costs to 𝑟∕𝜃 = 2 (Figs. 4a and 4b) and 𝑟∕𝜃 = 0.5
(Figs. 4c and 4d) and observe the plots of E[𝐶]. As expected, when
𝑟∕𝜃 > 1 (𝑟∕𝜃 < 1), shortages (wastages, respectively) play more
important role than 𝑟∕𝜃 = 1 case. We continue to observe the benefit
of using the opaque scheme: As 𝑝 increases, E[𝐶] goes down. Because
the property of E[𝐶] does not change qualitatively (although values
change), we use 𝑟 = 𝜃 = 1 in subsequent numerical experiments.

Following the same procedure as above, we vary 𝑛 while fixing
𝑐𝑣 = 0.32 (𝜆 = 10) and 𝑝 = 1, and obtain E[𝐶] for 𝑚 = 2 in Fig. 5a
and for 𝑚 = 3 in Fig. 5b. We observe similarities between Figs. 3e and
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Fig. 3. The effect of 𝑝 on shortages, wastages, and total cost for 𝑐𝑣 = 0.32 (𝜆 = 10), 𝑛 = 12. Notes: Plots in (a) and (b) are equivalent except for the range; we use [10, 20] for 𝑚 = 2
while we use [10, 30] for 𝑚 = 3. Both 𝑝 = 0% lines in (e) and (f) correspond to the baseline case with no opaque scheme.

Fig. 4. The effect of 𝑟∕𝜃 on total cost for 𝑐𝑣 = 0.32 (𝜆 = 10), 𝑛 = 12.

5a and between Figs. 3f and 5b. For example, 𝑛 = 12, 𝑝 = 10% lines
in Figs. 3e and 3f closely resemble 𝑛 = 2, 𝑝 = 100% lines in Figs. 5a
and 5b, respectively; 𝑛 = 12, 𝑝 = 20% and 𝑛 = 4, 𝑝 = 100% lines
also look very similar to each other. These similarities are due to the
proximity of variances: 𝜎212,0.1 ≈ 𝜎22,1 (= 𝜎2∕2) and 𝜎212,0.2 ≈ 𝜎24,1 (= 𝜎2∕4)

hold (see Fig. 2a). This observation implies that the value of 𝜎2𝑛,𝑝 is a
major determinant factor for E[𝐶] under the opaque scheme. (Note: we
observe this property more explicitly in Fig. 7.)

We observe a diminishing return property for the (𝑛, 𝑝) opaque
scheme in Figs. 3 and 5: the marginal impact on E[𝐶] is larger when 𝑝
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Fig. 5. The effect of 𝑛 on total cost for 𝑐𝑣 = 0.32 (𝜆 = 10), 𝑝 = 1. Notes: This figure and all other figures below assume 𝑟 = 𝜃 = 1. Both 𝑛 = 1 lines in (a) and (b) correspond to the
baseline case with no opaque scheme.

Fig. 6. Effect of 𝑐𝑣 on E[𝐶] for 𝑛 = 2.

or 𝑛 are smaller. For example, a change from 𝑝 = 0% to 10% in Fig. 3e
and a change from 𝑛 = 1 to 2 in Fig. 5a reduce E[𝐶] most (compared
to other changes such as a change from 𝑝 = 10% to 20%). This is
also attributed to the dependence of E[𝐶] on 𝜎2𝑛,𝑝: We observe a larger
marginal reduction of 𝜎2𝑛,𝑝 when 𝑝 or 𝑛 are smaller according to Fig. 2a.

5.5. Impact of 𝑐𝑣 of non-opaque products on the expected total cost E[𝐶]

We next examine the impact of variability (𝑐𝑣) of original de-
mand 𝐷0 on E[𝐶]. In Fig. 6, we use 𝑐𝑣 ∈ {0.50, 0.32, 0.27} for 𝑛 = 2
and compare their results. First, we observe that E[𝐶] is closer to zero
for smaller 𝑐𝑣 given 𝑞; this observation is attributed to the smaller 𝜎2𝑛,𝑝
for smaller 𝑐𝑣 (see also Fig. 1a). Second, E[𝐶] converges faster to its
minimum for smaller 𝑐𝑣 as 𝑝 → 1; this observation is attributed to the
increased speed of convergence of 𝜎2𝑛,𝑝 to its minimum 𝜎2𝑛,1 for smaller 𝑐𝑣
(see also Fig. 1b). These results imply that the (𝑛, 𝑝) opaque scheme
impacts E[𝐶] mainly through the change in the variance 𝜎2𝑛,𝑝 of 𝐷𝑝.

5.6. Impact of variance 𝜎2𝑛,𝑝 on the expected total cost E[𝐶]

So far, our experiments indicate a strong dependence of E[𝐶] on 𝜎2𝑛,𝑝.
To observe the relationship between 𝜎2𝑛,𝑝 and E[𝐶] more explicitly, we
plot them in Fig. 7. In this figure, we fix 𝑞 around its optimal base-
stock level and vary 𝑛 ∈ {2, 4, 8, 12} and 𝑝 ∈ {0, 0.1, 0.2,… , 1} for either
𝑚 = 2 or 𝑚 = 3 cases. Fig. 7 shows that E[𝐶] is approximately linearly
dependent on 𝜎2𝑛,𝑝 irrespective of (𝑛, 𝑝) except when E[𝐶] ≈ 0. This
result indicates that the reduction of E[𝐶] is primarily driven by the
reduction of 𝜎2𝑛,𝑝 until E[𝐶] becomes close to zero; once we achieve
E[𝐶] ≈ 0, the further reduction of 𝜎2𝑛,𝑝 does not impact E[𝐶]. The
threshold values of 𝜎2𝑛,𝑝 that achieve E[𝐶] ≈ 0 would provide a useful
tip for practitioners: it is not worthwhile to reduce 𝜎2𝑛,𝑝 beyond the
threshold since the maximum cost saving is already achieved. However,
the exact threshold is hard to obtain since it depends on both 𝑛 and 𝑝;
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Fig. 7. Effect of 𝜎2
𝑛,𝑝 on E[𝐶] for 𝑐𝑣 = 0.32 (𝜆 = 10). Notes: Eleven plots corresponding to 𝑝 = 0% to 100% for each 𝑛 are shown in each figure. Solid square dots on the top right

corner of all figures correspond to the 𝑝 = 0% case for all 𝑛 (baseline case with no opaque scheme).

Table 3
Comparison between E[𝐶] and 𝐶LB.
𝑚 𝑞 𝑛 1 2 4 8 12

𝜎2
𝑛,1 = 10∕𝑛 10 5 2.5 1.25 0.83

2 15 E[𝐶] 0.2993 0.0673 0.0067 0.0002 0.0000
𝐶LB 0.2287 0.0465 0.0042 0.0001 0.0000
2𝐶LB 0.4574 0.0930 0.0084 0.0002 0.0000

18 E[𝐶] 0.6365 0.3455 0.1610 0.0577 0.0249
𝐶LB 0.4759 0.2434 0.1080 0.0363 0.0156
2𝐶LB 0.9519 0.4868 0.2161 0.0726 0.0311

3 18 E[𝐶] 0.0249 0.0006 0.0000 0.0000 0.0000
𝐶LB 0.0183 0.0005 0.0000 0.0000 0.0000
3𝐶LB 0.0549 0.0016 0.0000 0.0000 0.0000

22 E[𝐶] 0.0993 0.0166 0.0006 0.0000 0.0000
𝐶LB 0.0469 0.0065 0.0003 0.0000 0.0000
3𝐶LB 0.1407 0.0194 0.0008 0.0000 0.0000

Notes: 𝑐𝑣 = 0.32 (𝜆 = 10), 𝑝 = 1. 𝑞 = 15 is optimal when 𝑚 = 2. 𝑞 = 18 is optimal when
𝑚 = 3. The underlined values specify that 𝐶LB is the largest value that goes below
𝛿 = 0.01.

alternatively, we can approximate the exact threshold by 𝜎2th, which is
determined by Eq. (9) in Definition 2.

Table 3 shows the total cost E[𝐶] and its theoretical lower and upper
bounds 𝐶LB and 𝑚𝐶LB, respectively, as implied by Proposition 2. We
evaluate 𝜎2th using sufficiently small 𝛿 (𝛿 = 0.01). By observing the
values of 𝐶LB in Table 3, it is straightforward to identify the smallest 𝑛
and the largest 𝜎2𝑛,1 that satisfy 𝐶LB ≤ 𝛿 (and thus E[𝐶] ≤ 𝑚𝐶LB ≤ 𝑚𝛿):
We obtain 𝜎2th = 2.5 at 𝑞 = 15 and 𝜎2th < 0.83 at 𝑞 = 18 for 𝑚 = 2; and
𝜎2th = 5 at both 𝑞 = 18 and 22 for 𝑚 = 3. These rough estimates of 𝜎2th
are consistent with the thresholds observed in Fig. 7.

6. Discussion and managerial insights

In this section, we discuss various issues and managerial insights
of our opaque scheme in detail. For readers’ convenience, we list key
questions one by one below.

6.1. Input parameters used in this study

Our model has several input parameters. An average product de-
mand is set to 𝜇 = 10 and per-period shortage and wastage costs are
set to 𝑠, 𝜃 ∈ {1, 2}; these parameters have arbitrary units and, thus,
are applicable to various cases (e.g., lb, kg, $, €). The ratio 𝑠∕𝜃 affects
the shape of the cost curve (see Fig. 4); however, the fundamental
properties we obtain do not change as discussed in Section 5.4. Two
important input parameters are a product coefficient of variation and
product shelf life periods; we set them as 𝑐𝑣 ∈ [0.27, 0.5] and 𝑚 ∈ {2, 3}
to reflect the commonly observed values (for example, 𝑐𝑣 ranges from
0.1 to 0.5 in [30], and shelf lives of baked goods, cut fruits/vegetables,
and prepared foods sold at retail stores are around two to three days).
If 𝑐𝑣 > 0.5, the effectiveness of the opaque scheme is even greater
that the results we obtain in this study. In contrast, if 𝑐𝑣 is very small
(e.g. 𝑐𝑣 ≲ 0.1), there is almost no benefit for implementing an opaque
scheme because of very small demand variability. Likewise, if 𝑚 > 3,
products can be treated almost the same as non-perishables since the
amount of wastage is very small; our opaque scheme does not provide
any advantage for such cases.

6.2. Benefit of our opaque scheme

Our opaque scheme aims to provide a new method to help retail-
ers better manage their inventory systems when suffering from large
shortages and wastages due to high variability of product demand.
Our opaque scheme using BPD is effective for perishables: It reduces
the variability of product demands, reduces shortages and wastages
of perishables, and achieves a lower total cost (a higher cost saving).
We provide rules of thumb to determine necessary parameters for the
implementation of our opaque scheme. Customers also benefit from
our opaque scheme. An opaque item for customers is simply an added
option; if they do not want to purchase an opaque product, they do
not need to. However, if they do purchase an opaque product, they
may benefit from a discount or reward such as free/reduced shipping
fee. Finally, and most importantly, the society would benefit from the
opaque scheme for a potentially large aggregate reduction of food
wastages. The opaque scheme, if implemented by many retail stores,
could help the society to contribute to the Sustainable Development
Goals (SDG) Target 12.3: ‘‘By 2030, halve per capita global food
waste at the retail and consumer levels and reduce food losses along
production and supply chains, including post-harvest losses’’ [31].
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6.3. Recommendations for managers

When product demands are highly variable, managers could first
check the threshold number of non-opaque products (Definition 2)
needed to achieve the maximum total cost saving. Assuming that the
number of non-opaque products available for them is less than this
threshold, retail store managers may next refer to the approximate
relative variance (Corollary 2) to obtain the approximate 𝑝 necessary
to achieve most of the benefit provided by the opaque scheme. For
example, we show in Fig. 1c that 80% of the benefit of the opaque
scheme is achieved by setting 𝑝 = 0.6𝑐𝑣, or 90% of the benefit of
opaque scheme is achieved by setting 𝑝 = 0.8𝑐𝑣, where the benefit is
defined as the reduction of variance, leading to the expected total cost
savings. Since 𝑐𝑣 is often much less than 1 (see, e.g., [30]), a smaller 𝑝
is sufficient to capture most of the benefit of the opaque scheme.

6.4. Ease of implementation in practice

The key factor that needs to be warranted is the anonymity of an
opaque product: its specification must be opaque. Thus, a traditional
in-person sales (where customers can easily see what is sold as an
opaque product) is less suitable for an opaque selling scheme (if not
impossible). This situation has drastically changed due to the rapid rise
of mobile apps (E-commerce via internet enabled phones). Through
mobile apps, customers make orders and complete payments from
within the store or outside of the store; after orders are made via mobile
apps, customers pick up ordered items (including opaque products)
from staff without going through a cash register. This scheme is gaining
popularity since it saves time for both customers and staff members. An
opaque sales can be implemented with almost no extra cost if stores
already adopt mobile apps.

6.5. Obstacles for implementation

Although our BPD opaque scheme is simple and easy to implement
in most cases, there are some cases that make the implementation of
BPD challenging. First, we require some portion of customers to be
indifferent among non-opaque products. If all customers have a strong
preference to purchase a specific (non-opaque) product or if only a
few switch from non-opaque to opaque products when the discount
for an opaque product is huge, opaque schemes do not work well.
The second, possibly more serious, obstacle for the opaque scheme
is the positive correlation among all non-opaque product demands. If
strong positive correlations exist among non-opaque product demands,
an opaque demand (pooled demand) cannot effectively reduce the
variability of non-opaque product demands. This same issue is called
systematic risk (or market risk) in the insurance and finance fields; a
risk pooling scheme does not work in this situation.

6.6. Limitations of our opaque scheme

The current study has many simplifying assumptions: scaled Poisson
and i.i.d. non-opaque product demands, a constant probability to shift
from each non-opaque product to an opaque product, and a constant
total customer demand before/after the implementation of the opaque
scheme. The inventory model we consider is also restricted, as we only
consider the zero lead time case. We also assume that a variable (per-
unit) holding cost is negligible compared to the fixed holding cost and
shortage/wastage costs; this assumption is reasonable when a facility
cost (including utility costs such as electricity and heating costs) takes a
large portion of the total holding cost. Finally, we simplify the analysis
in this paper by limiting our discussion only on BPD; however, in
practice, a hybrid of BPD and BPI may be a better alternative. In fact,
many extensions to our model are necessary to further investigate the
effectiveness of opaque schemes. We will address these extensions in
the future study.

7. Conclusions

In this paper we studied the effectiveness of an opaque scheme in
perishable inventory systems. We showed that our (𝑛, 𝑝) opaque scheme
based on the balancing policy on demand (BPD) can effectively reduce
the variability of orders for perishable products, leading to smaller
shortages and wastages in perishable inventory systems. Our study
has derived various analytical formulas, which could help practitioners
implement our opaque scheme. One of the most important results in
this study is Eq. (6) in Corollary 2, which revealed the relationship
between the opaque demand proportion 𝑝 and the coefficient of vari-
ation of non-opaque product demands 𝑐𝑣; this relationship indicates
that the ratio 𝑝∕𝑐𝑣 plays a critical role in determining the reduction
of the variability as well as the total cost (shortage and wastage costs).
We also provided a convenient indicator, the threshold variance, that
achieves the maximum total cost savings from the opaque scheme; this
information helps practitioners to decide whether they want to imple-
ment our opaque scheme, and if so, which combination of parameters
should be used.

We observed that a growing number of retail stores have started to
implement various opaque schemes as a tool (on their mobile apps)
to reduce food wastage and to make more profit. This study has
demonstrated and confirmed that an opaque scheme is effective for
perishable inventory systems when the variability of product demands
is high. However, it requires further investigation to accommodate real-
world complexities. With this study of an opaque scheme for perishable
inventory systems, we hope to contribute to the reduction of food
wastage, one of the most important sustainable development goals, as
well as to encourage further investigations of this promising idea.
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Table A.1
Summary of notations.

Notation Description

𝑛 Number of non-opaque products
𝑖 Index for non-opaque product 𝑖 ∈ [1, 𝑛]
𝑝𝑖 Probability to switch from non-opaque product 𝑖 to opaque product
𝑝 𝑝𝑖 when all 𝑝𝑖 are identical
𝒑 Probability vector representing all 𝑝𝑖
𝐷𝑖

0 Original demand for non-opaque product 𝑖 per period
𝐷0 𝐷𝑖

0 when all 𝐷𝑖
0 are i.i.d.

𝜆 Base Poisson rate for 𝐷0
𝜇𝑖 Average original demand for non-opaque product 𝑖 (expected value

of 𝐷𝑖
0)

𝜇 𝜇𝑖 when all 𝜇𝑖 are identical
𝑋𝑖

𝑝 Intermediate demand for non-opaque product 𝑖 per period
𝑋0

𝑝 Intermediate demand for opaque product per period
𝐷𝑖

𝑝 Adjusted demand for non-opaque product 𝑖 per period
𝐷𝑝 𝐷𝑖

𝑝 when all 𝐷𝑖
0 are i.i.d.

𝜎2 Average variance of original demands 𝐷𝑖
0 ,∀𝑖

𝜎2
𝑛,𝑝 Average variance of adjusted demands 𝐷𝑖

𝑝 ,∀𝑖
𝜎2
𝑟𝑒𝑙(𝑝) Relative variance

𝑐𝑣 Coefficient of variation for non-opaque product
𝑚 Product shelf life periods
𝑟 Shortage cost per item (adjusted by the item cost)
𝜃 Wastage cost per item (adjusted by the item cost)
𝑆 Number of shortages per period
𝑊 Number of wastages per period
𝐶 Total system cost per period
𝐹𝑌 (⋅) Cumulative distribution function (CDF)
𝑃𝑌 (⋅) Probability mass function (PMF)

Table A.2
Summary of units of measurement.

Parameter Unit of measurement

𝜇𝑖 , 𝜇,𝐷𝑖
0 , 𝐷0 , 𝑋𝑖

𝑝 ,
𝑋0

𝑝 , 𝐷
𝑖
𝑝 , 𝐷𝑝 , 𝑆,𝑊

Amount (e.g., mass, volume, or number of items) per period

𝑟, 𝜃 Cost (e.g., US$, €) per item
𝐶 Cost (e.g., US$, €) per period

Appendix A. Notation

Tables A.1 and A.2 show the notations and units of measurement,
respectively.

Appendix B. Proofs

Proof of Lemma 1. The first inequality, 𝜎2 ≥ 𝜎2𝑛,𝒑, holds as the opaque
scheme is only used to reduce 𝜎2𝑛,𝒑; the equality holds when 𝒑 = 𝟎. The
second inequality, 𝜎2𝑛,𝒑 ≥ 𝜎2

𝑛 , holds since

𝜎2𝑛,𝒑 = 1
𝑛
∑

𝑖
𝑣𝑎𝑟(𝐷𝑖

𝒑) =
1
𝑛
∑

𝑖
E[(𝐷𝑖

𝒑 − 𝜇𝑖)2] = E

[

1
𝑛
∑

𝑖

(

𝐷𝑖
𝒑 − 𝜇𝑖

)2
]

= E
⎡

⎢

⎢

⎣

(

1
𝑛
∑

𝑖
(𝐷𝑖

𝒑 − 𝜇𝑖)

)2

+ 1
𝑛2

∑∑

𝑖<𝑗

(

(𝐷𝑖
𝑝 − 𝜇𝑖) − (𝐷𝑗

𝑝 − 𝜇𝑗 )
)2⎤
⎥

⎥

⎦

≥ E
⎡

⎢

⎢

⎣

(

1
𝑛
∑

𝑖
(𝐷𝑖

𝒑 − 𝜇𝑖)

)2
⎤

⎥

⎥

⎦

= E
⎡

⎢

⎢

⎣

(

1
𝑛
∑

𝑖
𝐷𝑖

𝒑 −
1
𝑛
∑

𝑖
𝜇𝑖

)2
⎤

⎥

⎥

⎦

= E
⎡

⎢

⎢

⎣

(

1
𝑛
∑

𝑖
𝐷𝑖

0 −
1
𝑛
∑

𝑖
𝜇𝑖

)2
⎤

⎥

⎥

⎦

= 𝑣𝑎𝑟

(

1
𝑛
∑

𝑖
𝐷𝑖

0

)

= 𝜎2

𝑛
,

where an equality holds when 𝐷𝑖
𝑝 − 𝜇𝑖 = 𝐷𝑗

𝑝 − 𝜇𝑗 for all 𝑖 and 𝑗, which
is realized when 𝒑 = 𝟏. □

Proof of Lemma 2. We use 𝜎2𝑛,0 to represent 𝜎2𝑛,𝑝 and 𝜎2𝑛,1, from which
we obtain 𝜎2𝑟𝑒𝑙(𝑝).

𝜎2𝑛,0 =
1
𝑛
∑

𝑖
𝑣𝑎𝑟(𝐷𝑖

0) =
1
𝑛
𝑣𝑎𝑟

(

∑

𝑖
𝐷𝑖

0

)

= 1
𝑛
𝑣𝑎𝑟

(

∑

𝑖
𝐷𝑖

𝑝

)

= 1
𝑛

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑐𝑜𝑣(𝐷𝑖

𝑝, 𝐷
𝑗
𝑝)

= 1
𝑛

𝑛
∑

𝑖
𝑣𝑎𝑟(𝐷𝑖

𝑝) +
2
𝑛
∑∑

1≤𝑖<𝑗≤𝑛
𝑐𝑜𝑣(𝐷𝑖

𝑝, 𝐷
𝑗
𝑝)

=
(

1 + (𝑛 − 1)𝜌𝑝
)

𝜎2𝑛,𝑝 ,

𝜎2𝑛,1 =
1
𝑛
𝜎2𝑛,0 ,

𝜎2𝑟𝑒𝑙(𝑝) =
𝜎2𝑛,𝑝 − 𝜎2𝑛,1
𝜎2𝑛,0 − 𝜎2𝑛,1

=

𝜎2𝑛,0
1+(𝑛−1)𝜌𝑝

−
𝜎2𝑛,0
𝑛

𝜎2𝑛,0 −
𝜎2𝑛,0
𝑛

=
1 − 𝜌𝑝

1 + (𝑛 − 1)𝜌𝑝
. □

Proof of Proposition 1. The following identity relationship exists
when 𝑛 = 2: 𝑋1

𝑝 + 𝑋2
𝑝 + 𝑋0

𝑝 = 𝐷1
𝑝 + 𝐷2

𝑝 = 𝐷1
0 + 𝐷2

0, where 𝑋1
𝑝 , 𝑋

2
𝑝 , 𝑋

0
𝑝

are independent scaled Poisson random variables, and 𝐷1
0 and 𝐷2

0 are
independent scaled Poisson random variables. Thus, we obtain 𝜎2𝑇 =
𝑣𝑎𝑟(𝐷1

𝑝 +𝐷2
𝑝) = 𝑣𝑎𝑟(𝐷1

0 ±𝐷2
0). Since 𝐷1

𝑝 = 𝐷2
𝑝 when 𝑝 = 1, we have

𝜎2𝑛,𝑝 =
𝑣𝑎𝑟(𝐷1

𝑝) + 𝑣𝑎𝑟(𝐷2
𝑝)

2
=

𝑣𝑎𝑟(𝐷1
𝑝 +𝐷2

𝑝)

4
+

𝑣𝑎𝑟(𝐷1
𝑝 −𝐷2

𝑝)

4

=
𝜎2𝑇
4

+
𝑣𝑎𝑟(𝐷1

𝑝 −𝐷2
𝑝)

4
,

𝜎2𝑛,0 =
𝜎2𝑇
2
, 𝜎2𝑛,1 =

𝜎2𝑇
4
, 𝜎2𝑟𝑒𝑙 =

𝜎2𝑛,𝑝 − 𝜎2𝑛,1
𝜎2𝑛,0 − 𝜎2𝑛,1

=
𝑣𝑎𝑟(𝐷1

𝑝 −𝐷2
𝑝)

𝜎2𝑇
.

Note that 𝐷1
𝑝 and 𝐷2

𝑝 are not independent except when 𝑝 = 0. Thus, to
find 𝑣𝑎𝑟(𝐷1

𝑝 −𝐷2
𝑝), we separate the entire state space into three disjoint

sets:
𝐴1 = {𝑋1

𝑝 , 𝑋
2
𝑝 , 𝑋

0
𝑝 |𝑋

1
𝑝 −𝑋2

𝑝 > 𝑋0
𝑝} = {𝑋1

𝑝 , 𝑋
2
𝑝 , 𝑋

0
𝑝 | 𝑇 > 0},

𝐴2 = {𝑋1
𝑝 , 𝑋

2
𝑝 , 𝑋

0
𝑝 | |𝑋

1
𝑝 −𝑋2

𝑝 | ≤ 𝑋0
𝑝},

𝐴3 = {𝑋1
𝑝 , 𝑋

2
𝑝 , 𝑋

0
𝑝 |𝑋

1
𝑝 −𝑋2

𝑝 < −𝑋0
𝑝}.

Here, observe that 𝐴1 and 𝐴3 are identical when 𝑋1
𝑝 and 𝑋2

𝑝 are
flipped, and also that 𝐷1

𝑝 −𝐷2
𝑝 = 𝑇 given 𝐴1 and 𝐷1

𝑝 −𝐷2
𝑝 = 0 given 𝐴2.

Therefore we have
𝑣𝑎𝑟(𝐷1

𝑝 −𝐷2
𝑝|𝐴1) = 𝑣𝑎𝑟(𝐷1

𝑝 −𝐷2
𝑝|𝐴3) = 𝑣𝑎𝑟(𝑇 |𝑇 > 0),

𝑣𝑎𝑟(𝐷1
𝑝 −𝐷2

𝑝|𝐴2) = 0,

E[𝐷1
𝑝 −𝐷2

𝑝|𝐴1] = −E[𝐷1
𝑝 −𝐷2

𝑝|𝐴3] = E[𝑇 |𝑇 > 0], E[𝐷1
𝑝 −𝐷2

𝑝|𝐴2] = 0,

E[𝐷1
𝑝 −𝐷2

𝑝] = 0, 𝑃 𝑟(𝐴1) = 𝑃𝑟(𝐴3) = 𝑃𝑟(𝑇 > 0).

We can now represent 𝑣𝑎𝑟(𝐷1
𝑝 −𝐷2

𝑝) using 𝑇 as follows:

𝑣𝑎𝑟(𝐷1
𝑝 −𝐷2

𝑝) = E[𝑣𝑎𝑟(𝐷1
𝑝 −𝐷2

𝑝|𝐴)] + 𝑣𝑎𝑟(E[𝐷1
𝑝 −𝐷2

𝑝|𝐴])

=
∑

𝑖
𝑣𝑎𝑟(𝐷1

𝑝 −𝐷2
𝑝|𝐴𝑖)𝑃𝑟(𝐴𝑖) +

∑

𝑖
(E[𝐷1

𝑝 −𝐷2
𝑝|𝐴𝑖])2𝑃𝑟(𝐴𝑖)

= 2
[

𝑣𝑎𝑟(𝑇 |𝑇 > 0) + (E[𝑇 |𝑇 > 0])2
]

𝑃𝑟(𝑇 > 0)

= 2E[𝑇 2
|𝑇 > 0]𝑃𝑟(𝑇 > 0),

from which we can derive the representation of 𝜎2𝑟𝑒𝑙. □

Proof of Corollary 2. The difference between two independent Pois-
son random variables (or scaled variables of them) is known to fol-
low a Skellam distribution, which is approximately represented by a
normal distribution. Since 𝑋1

𝑝 and 𝑋2
𝑝 + 𝑋0

𝑝 are independent scaled
Poisson random variables, the difference 𝑇 approximately follows a
normal distribution: 𝑇 ∝ 𝑁(−2𝑝𝜇, 2𝜇

2

𝜆 ), whose mean is 𝜇𝑇 = −2𝑝𝜇

and standard deviation is 𝜎𝑇 = 𝜇
√

2
𝜆 . The z-score at 𝑇 = 0 is
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𝛼 = −𝜇𝑇
𝜎𝑇

= 𝑝
√

2𝜆 = 𝑝
𝑐𝑣

√

2. Let also 𝑍 = 1 −𝛷(𝛼) = 𝛷(−𝛼) (≈ 𝑃𝑟(𝑍 > 0)).

The distribution of 𝑇 given 𝑇 > 0 is approximated by a truncated
normal distribution, whose mean and variance are

E[𝑇 |𝑇 > 0] ≈ 𝜇𝑇 + 𝜎𝑇
𝜙(𝛼)
𝑍

= 𝜎𝑇

(

−𝛼 +
𝜙(𝛼)
𝑍

)

,

𝑣𝑎𝑟(𝑇 |𝑇 > 0) ≈ 𝜎2𝑇

(

1 + 𝛼
𝜙(𝛼)
𝑍

−
(

𝜙(𝛼)
𝑍

)2
)

.

Using these relationships with Proposition 1, we obtain

𝜎2𝑟𝑒𝑙 =
2
[

𝑣𝑎𝑟(𝑇 |𝑇 > 0) + (E[𝑇 |𝑇 > 0])2
]

𝑃𝑟(𝑇 > 0)

𝜎2𝑇
≈ 2(1 + 𝛼2)𝛷(−𝛼) − 2𝛼𝜙(𝛼). □

Proof of Proposition 2. We first prove Eq. (7). By definition, E[𝑆] =
E[𝐷1 − 𝑞]+. Also note that 𝐷1 = 𝜇

𝑛𝜆𝑌𝑛𝜆 and 𝑃𝑌𝛾 (𝑠) = 𝛾𝑠𝑒−𝛾

𝑠! . It is
straightforward to obtain

E[𝑆] = E
[

𝐷1 − 𝑞
]+ = E

[ 𝜇
𝑛𝜆

𝑌𝑛𝜆 − 𝑞
]+

=
𝜇
𝑛𝜆

E
[

𝑌𝑛𝜆 −
𝑛𝜆𝑞
𝜇

]+

=
𝜇
𝑛𝜆

∞
∑

𝑦=𝑠+1

(

𝑦 −
𝑛𝜆𝑞
𝜇

)

𝑃𝑌𝑛𝜆 (𝑦)

=
𝜇
𝑛𝜆

[ ∞
∑

𝑦=𝑠+1
𝑦𝑃𝑌𝑛𝜆 (𝑦) −

𝑛𝜆𝑞
𝜇

∞
∑

𝑦=𝑠+1
𝑃𝑌𝑛𝜆 (𝑦)

]

=
𝜇
𝑛𝜆

[

𝑛𝜆
∞
∑

𝑦=𝑠
𝑃𝑌𝑛𝜆 (𝑦) −

𝑛𝜆𝑞
𝜇

∞
∑

𝑦=𝑠+1
𝑃𝑌𝑛𝜆 (𝑦)

]

= 𝜇
(

1 − 𝐹𝑌𝑛𝜆 (𝑠) + 𝑃𝑌𝑛𝜆 (𝑠)
)

− 𝑞
(

1 − 𝐹𝑌𝑛𝜆 (𝑠)
)

= (𝜇 − 𝑞)
(

1 − 𝐹𝑌𝑛𝜆 (𝑠)
)

+ 𝜇𝑃𝑌𝑛𝜆 (𝑠).

Next, we prove Eq. (8). The proof of E[𝑊 ] ≥ E
[

𝑞
𝑚 −𝐷1

]+
is

presented in [29]; this lower bound is obtained by evaluating the
per-period (i.e., 1∕𝑚 of the) expected wastage of the first 𝑚 periods
assuming that all inventory in the beginning of period 1 is fresh. In
contrast, the upper bound is the expected wastage of the 𝑚th period
assuming again that all inventory in the beginning of period 1 is fresh,
since the amount of the oldest units is largest in the beginning of the
𝑚th period. We omit the remaining part of the derivation of Eq. (8)
since it is almost identical to the derivation of Eq. (7) except we
use 𝑌𝑛𝑚𝜆 instead of 𝑌𝑛𝜆. □
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