研究紹介

NaTaO₃光触媒微粒子の表面科学

大 西 洋

神戸大学理学研究科化学専攻 📼 657-8501 兵庫県神戸市灘区六甲台町 1-1

(2010年11月9日受理)

Surface Science of NaTaO₃ Photocatalysts

Hiroshi ONISHI

Department of Chemistry, School of Science, Kobe University Rokko-dai, Nada, Kobe, Hyogo 657-8501

(Received November 9, 2010)

Electron-hole recombination kinetics was observed in NaTaO₃ photocatalysts doped with Ca, Sr, Ba, and La using time-resolved infrared absorption. The recombination rate was compared with the ultraviolet light-derived H₂ production rate in the water splitting reaction to estimate the electron-to-H₂ conversion efficiency. The conversion efficiency was sensitive to the nanometer-scale topography of the photocatalyst surface. The particularly high efficiency on the nondoped and 0.5 mol% Sr-doped photocatalysts was related to the flat (100) crystalline surfaces exposed on the photocatalyst particles. In the presence of NiO cocatalysts, the rate of electron trasfer across the La-doped photocatalyst surfaces was enhanced. These results demonstrate intense demand to do surface science on metal oxide particles.

KEYWORDS : particles, photocatalysts, infrared absorption, dopants, hydrogen

1. はじめに

媒質に埋没した触媒微粒子の界面を,あたかも真空中 の単結晶表面であるかのように,精密かつ動的に計測評 価する。これは多くの表面科学研究者が抱く夢であろ う。先進的な機能をもつ触媒や光触媒は魅惑的な研究対 象である。ある触媒が非常に高い活性と選択性を示すと したら,反応の鍵となる表面構造を精密に制御できてい るからに違いない。そのような優れた触媒の動作機構を 解明することから,新しいサイエンスがきっと立ち上が ってくる。

触媒を理解するための表面科学は、最表面だけを対象 とするのではなく、界面の上下数原子層ずつを視野にい れて展開することが望ましい(Fig.1)。最表面とそこに 吸着した化学種を閉じた系とみなすのではなく、周辺媒 質との物質交換(反応物の吸着と生成物の脱離)、反応 に必要なエネルギーの供給(熱または光)、触媒内部か ら最表面へ輸送される物質とエネルギー(光触媒であれ ば電子や正孔,酸化触媒であれば格子酸素)をあらわに 考慮することが望まれる。本稿では,触媒内部から表面 へのエネルギー伝達が重要な事例として微粒子光触媒を とりあげ,光触媒微粒子の表面が魅力的な研究対象であ ることを述べる。

2. 光触媒のドーピング

太陽光による水素燃料生成と微弱光による有機物分解 を目標として、光触媒材料の探索がすすめられている。 これまでに多数の候補物質が見いだされ、物質変換効率 は 10 年前には考えられなかったほど高い水準に達し た^{1,2)}。この分野の研究開発において先頭にたつ日本が、 これからも世界をリードし続けるためには、新世代光触 媒の開発を支える知的基盤の構築が必要である。たとえ ば、ワイドバンドギャップ半導体である NaTaO₃や TiO₂へのドーピングによって高い水素生成活性や可視 光応答性をもつ光触媒が開発されてきた。しかし、依然 としてドーパントが電子-正孔再結合反応にはたす役割

E-mail : oni@kobe-u.ac.jp

Fig. 1. A catalyst interfaced with an environment.

を演繹的に説明することができず,ゆえにドーパント添 加の効果を予見できない。半導体内部で光励起された電 子と正孔のうち,再結合反応による消滅を免れたものだ けが光触媒表面に到達して反応を引き起こす。たとえド ーピングによってワイドバンドギャップ半導体に可視光 応答性を付与したとしても,同時に再結合反応を促進し てしまえば良好な光触媒とならない。

3. 時間分解赤外吸収分光

半導体内でバンドギャップ励起された電子は中赤外光 を吸収する。筆者らはこの性質を利用して波長 5 μm 程 度の赤外吸光度の時間変化から光電子-正孔再結合反応 の速度を計測し,ドーパントの果たす役割を検討してき た^{3,4)}。計測原理と実験方法は,白金を担持した TiO₂ 光 触媒の測定結果と共に本誌研究紹介⁵⁾で紹介しているの で参照いただきたい。中赤外光をプローブとして利用す る利点は(1)散乱による妨害を受けずに透過吸収を測 定して微粒子中の励起電子を定量できるところにある。 光触媒材料の多くは粒径 0.1-1 μm の微粒子なので可視 光を強く散乱する。さらに(2)励起電子による赤外光 吸収は TiO₂ ばかりでなく全ての半導体に共通の現象で あり,複合酸化物や固溶体を含め幅広い化合物群を対象 とする光触媒の研究手段として適している。

4. NaTaO3 光触媒へのドーピング

NaTaO₃(タンタル酸ナトリウム)は工藤ら⁶が開発し た紫外光励起光触媒であり、適切なドーピングと助触媒 の添加を施すと、50%を超える量子効率で純水を分解 し水素と酸素を当量発生する⁷⁷。Fig.2にNaTaO₃(無ド ープ)を波長266 nm のパルス光で励起して計測した赤 外過渡吸収スペクトル⁸⁰を示す。パルス光によるバンド ギャップ励起によって、4000から900 cm⁻¹へかけてな だらかに強度を増す吸収が現れ、パルス光励起後の遅延 時間とともに形状を変えずに減衰した。光励起電子を捕 獲する酸素ガスに曝すと吸収が減衰し、正孔を捕獲して 再結合を阻害するメタノール蒸気に曝すと増強した。こ れらの実験事実から、この赤外吸収はバンドギャップ励

Fig. 2. Transient IR absorption spectra of a non-doped NaTaO₃ photocatalyst. The photocatalyst was irradiated by a 266 nm UV pulse of 1 mJ after ref. 8.

Fig. 3. The decay of IR absorption at 2000 cm⁻¹ observed with doped and non-doped NaTaO₃ photocatalysts. The normalized absorbance change is shown as a function of the time delay. The dopant concentration was regulated to be 2 mol% after ref. 12.

起された電子による吸収に帰属できる。光励起した TiO₂⁹や K₃Ta₃B₂O₁₂¹⁰光触媒にもほぼ同型のスペクトル をもつ赤外吸収が現れた。

工藤らは NaTaO₃に La⁷⁾やアルカリ土類金属¹¹⁾を数 mol% ドープすることで、水素生成の反応速度が3倍程 度向上することを見いだした。これらのドープ体を光励 起すると Fig. 2 と同様に励起電子による赤外吸収を呈す る。透過吸収で測定した吸光度は励起電子量に比例する から、吸光度の時間変化から励起電子の減少を追跡でき る。Fig.3にいくつかのドープ光触媒で計測した 2000 cm⁻¹の吸光度の時間変化¹²⁾を示す。いずれも光触媒を アルゴン気体中において測定したので、光触媒反応によ って電子や正孔が消費されることはない。したがって Fig.3の吸光度減衰は電子-正孔再結合反応によるもので ある。ドープ体と無ドープ体を比べるとドープ体の減衰 速度が低下している。たとえば Sr を 2 mol% ドープし た光触媒では遅延時間 10 µs での吸光度は、無ドープ体 の4倍に達する。これは再結合反応がドーパントの存在 によって抑制されたことを示している。

定常光を照射したときに水を分解して水素を生成する

Fig. 4. The rate of H_2 production as a function of Δ abs (10 μ s)/ Δ abs (0). open square : non-doped NaTaO₃, filled square : 0.5 mol% Sr-doped photocatalyst, dots : the other six doped photocatalysts. Doped element and concentration are inserted in the figure after ref. 12.

反応速度は La やアルカリ土類金属のドープによって向 上する。電子と正孔の再結合を抑制すれば、光触媒表面 まで到達して反応を引き起こす割合が増えるから、ドー ピングによる水素生成の促進を定性的に説明できる。も う一歩ふみこんで定量的な関係を検討した結果¹²⁾を Fig. 4に示す。図の横軸は、UV励起光パルス照射直後(遅 延時間 0)での赤外吸光度と,遅延時間 10 µs での吸光 度の比である。0-10 µs のあいだに再結合によって電子 が速く減衰すれば比は0に近づき,遅く減衰すれば1に 近づく。定常光照射によって光触媒微粒子中に生成する 励起電子の定常濃度は、光子吸収の頻度と再結合反応速 度の比で決まるから,図の横軸は定常光照射下での励起 電子濃度を近似的に表している。図の縦軸は定常光照射 による水素生成速度¹³⁾である。すなわち Fig. 4 は、定常 光照射によって生じる励起電子を水素生成に利用できる 効率を示している。図の左上に位置する光触媒は、右下 に位置する光触媒よりも高い効率で励起電子を水素に転 換する。実測した8種のNaTaO3光触媒のうち6種は図 中の実線に沿って分布した。右上がりの直線に沿って列 んだ6種は、励起電子を水素に転換する効率がほぼ等し い光触媒とみなすことができる。ドープした元素とドー プ量に応じて励起電子濃度は異なるが、電子から水素を 作る効率は等しい光触媒群である。それに対して、無ド ープ体と Sr を 0.5 wt% ドープした光触媒は実線から離 れた位置にある。両者がともに実線より左上にずれてい ることは、励起電子から水素への変換効率が実線上の6 種より高いことを意味している。

励起電子で水を還元して水素を作り出す効率は,水素 製造光触媒の機能を左右する重要な要因である。効率の 高い2種が他の6種より高い効率をあげる原因は何だろ うか?走査電子顕微鏡(SEM)で光触媒粒子の形状を

Fig. 5. Scanning electron microscope images of (a) the nondoped, (b) 0.5-mol% Sr-doped, (c) 2-mol% Srdoped, (d) 2-mol% Ca-doped, (e) 1-mol% Badoped, (f) 2-mol% La-doped NaTaO₃ photocatalysts after ref. 12.

調べた結果^{12,13)}を Fig.5 に示す。像(a)の無ドープ体 は粒径は 2-3 µm 立方体である。NaTaO₃ はわずかに歪 んだペロブスカイト型構造をとるから(100)面が熱力学 的に安定だと考えれば立方体の粒子形を説明できる。 0.5 mol%のSr をドープすると像(b)のように粒径が 0.2 µm まで減少する。粒径減少の駆動力はドーパント に起因するホスト結晶の歪みであろう。ホストカチオン である Na⁺ や Ta⁵⁺ と異なるイオン半径をもつドーパン トを加えると構造歪みが結晶内部に蓄積する。表面垂直 方向に大きな構造自由度をもつ表面は,構造歪みを逃が す役割を果たす。ゆえに表面/内部比を増やせば,構造 歪みに起因するエネルギー損失を減らすことができる。

Srドープ量を 2 mol% に増やすと,像(c)のように 立方体結晶の表面に多数のステップが現れた。このよう な表面再構成によって,一定粒径のもとで表面積をさら に増やすことができる。他の 5 種類の光触媒でも多数の ステップを含む表面再構成が観察された。2 mol%の Ca, 1 mol%の Ba, 2mol%の La をドープした光触媒の SEM 像を(d)から(f)に示す。これらの再構成した 光触媒ではドーパントは表面に偏積していると予測さ れ,分析透過電子顕微鏡(TEM-EDX)¹⁴⁾やエックス線光 電子分光¹³⁾による組成分析もそれを支持している。ゆえ に微粒子最表面の組成と原子レベル構造は NaTaO₃ (100)表面と異なることも考えられるが,その実態はい まだ明らかでない。

SEM で観察した粒子形状を Fig. 4 をもとに推定した

大 西

洋

電子-水素変換効率と比較しよう。平滑な表面をもつ光 触媒(無ドープ体と 0.5 mol% Sr ドープ体)の変換効率 は高く,多数ステップを含むように表面再構成した光触 媒(他の6種)の変換効率は低かった。すなわち光励起 電子を反応物(おそらく吸着 H⁺)に付与する過程が, 表面再構成によって阻害されるのである。

5. NiO 助触媒の効果

ドープによる NaTaO₃ 表面の再構成によって,水素生 成反応が阻害されることを前節で述べた。阻害の要因と しては(1)表面をまたぐ電子移動の阻害,または(2) 結晶内部から表面への電子輸送の阻害が考えられる。工 藤ら⁷⁷は NiO 助触媒を 0.2 wt% 添加することで La ドー プ NaTaO₃ 光触媒の水素生成反応速度が 44 倍に向上し, 反応の量子効率が 50% を超えることを見いだしている。 光触媒微粒子の最表面に存在する助触媒が大きな反応促 進効果を示したことは,表面再構成による反応阻害が要 因(1)によって起きることを示唆している。

NiO 助触媒の添加が励起電子ダイナミクスに与える影響⁸⁾を Fig.6 に示す。La を 2 mol% ドープした NaTaO₃ と,それに 0.2 wt%の NiO 助触媒を加えた光触媒を 266 nm パルス光で励起し,光励起電子による赤外吸収を計 測した。灰色線で示した曲線は光触媒を真空中において 計測した吸光度であり,電子-正孔再結合による減衰を あらわしている。助触媒を添加した光触媒の吸光度は, 添加しない光触媒の 1/10 程度しかない。これは光励起 電子が効率良く NaTaO₃ から NiO に移動したことを意 味している。もし NiO が電子-正孔再結合を媒介するた めに電子数が 1/10 に減少しているとしたら,定常光照 射による水素生成速度が向上するはずはないからである。

それぞれの光触媒を 10 Torr の水蒸気中で光励起した 結果を黒線で重ね描きした。助触媒のない NaTaO₃ では 遅延時間 0.1 µs-1 s の範囲で黒線が灰色線より上にあ る。これは光励起された正孔が光触媒に吸着した水を酸 化する反応が 0.1 µs 以内に完結し,再結合を封じられた 光励起電子が残存すると考えれば説明できる。光励起電 子が水を還元する反応は酸化反応より速度が遅く,還元 反応による電子消費は遅延時間 1 s 以降でおきる。この ように解釈すると,灰色線と黒線が交差する遅延時間が 還元反応にかかる時間をあらわす。NiO 助触媒を加えた 光触媒では,灰色線と黒線の交点は遅延時間 1 µs まで 前進した。助触媒の添加によって還元反応の速度が 10⁶ 倍に向上したことになる。

2 mol% の La をドープした NaTaO₃ に 0.2 wt% の NiO 助触媒を担持した光触媒は,量子効率 50% 超で水を分 解して水素を発生する能力をもつ。この高い活性は(1) ド

Fig. 6. The decay of photogenerated electrons in the bare and NiO-loaded NaTaO₃ photocatalysts doped with La of 2 mol%. The transient IR absorption at 2000 cm⁻¹ was observed in the absence and presence of 10 Torr H₂O after ref. 8.

Fig. 7. A photocatalytic reaction involving three steps; (1) photoexcitation of electrons and holes, (2) their diffusion to the surface, and (3) attachment to reactants across the surface.

ープによる電子-正孔再結合の抑制と,(2)助触媒による 界面電子移動の促進という二つの触媒修飾の重ね合わせ によって得られたことが以上の研究から明らかとなった。

6. おわりに

本研究では NaTaO₃ 光触媒を例として,ドーピングと 助触媒担持という触媒修飾が触媒機能を向上させるメカ ニズムを考察した。そこから浮かび上がってきたのは, ドーピングに起因する表面再構成と,助触媒担持という 光触媒微粒子表面の化学修飾が,界面電子移動の効率を 支配しているという構図である(Fig. 7)。多数ステップを 含む NaTaO₃ 再構成表面や,0.2 wt%の担持量で最も効率 良くはたらく NiO 助触媒の構造を明らかにしたいとこ ろであるが,µm サイズの微粒子表面やそこに担持した微 量成分を分析することは決してやさしい課題ではない。 先人達の努力によって mm サイズの結晶表面を対象に 精緻なサイエンスを展開できるまでに発達した表面科学 が挑むべき課題として,我々の前に立ちはだかっている。 謝

辞

本稿は山方啓・石橋孝章(神奈川科学技術アカデミ ー),丸山規司・池田俊達(神戸大学),工藤昭彦・加藤 英樹・岩瀬顕秀(東京理科大学)との共同研究をまとめ たものである。科学技術振興機構 CREST 藤島昭領域の 工藤昭彦チーム(2002-2007 年)と科学研究費補助金基 盤研究(B)(2009-2011 年)による支援に感謝する。

文 献

- 1) A. Kudo and Y. Miseki: Chem. Soc. Rev. **38**, 253 (2009).
- K. Maeda and K. Domen : J. Phys. Chem. Lett. 1, 2655 (2010).
- A. Yamakata, T. Ishibashi, K. Takeshita and H. Onishi : Topics in Catalysis 35, 211 (2005).
- A. Yamakata, T. Ishibashi and H. Onishi : J. Molecular Catal. A 199, 85 (2003).
- 5) 山方 啓, 石橋孝章, 大西 洋: 表面科学 24, 46

(2003).

- 6) H. Kato and A. Kudo: J. Phys. Chem. B **105**, 4285 (2001).
- 7) H. Kato and A. Kudo: Chem. Phys. Lett. **331**, 373 (2000).
- A. Yamakata, T. Ishibashi, H. Kato, A. Kudo and H. Onishi : J. Phys. Chem. B **107**, 14383 (2003).
- A. Yamakata, T. Ishibashi and H. Onishi : Chem. Phys. Lett. 333, 271 (2001).
- T. Ikeda, S. Fujiyoshi, H. Kato, A. Kudo and H. Onishi : J. Physi. Chem. B **110**, 7883 (2006).
- A. Iwase, H. Kato, H. Okutomi and A. Kudo : Chem. Lett.
 33, 1260 (2004).
- 12) M. Maruyama, A. Iwase, H. Kato, A. Kudo and H. Onishi : J. Phys. Chem. C **113**, 13918 (2009).
- A. Iwase, H. Kato and A. Kudo : Chem. Sus. Chem. 2, 873 (2009).
- H. Kato, K. Asakura and A. Kudo : J. Am. Chem. Soc. 125, 3082 (2003).